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Abstract THERE ARE TWO MAJOR THEMES of this article.

Cooperative distributed problem solving networks are distributed net, First, we introduce readers to the emerging subdiscipline of
works of semi-autonomous processilng Des that work together o solve Al called Ditributed Problem Solving, and more specifically
a sivde problem. The Distributed Vehicle Monitoring Teatbed is a the authors' research on Functionally Accurate, Cooperative
flexible and fully-instrumented research tool for empirically evaluating systems. Second, we discuss the structure of tools that al-
alternative designs for these networks. The testbed simulates a clams low more thorough experimentation than has typically been
of a distributed knowledge-based problem solving systems operating on
an abstracted version of a vehicle monitoring task. performed in Al research. An example of such a tool. the
There are two important aspects to the testbed: (I.) it implements Distributed Vehicle Monitoring Testbed, will be presented.
a novel generic architecture for distributed problem solving networks The testbed simulates a class of distributed knowledge-based
that exploits the use or sophisticated local node contla and meta-level problem solving systems operating on an abstracted version
control to improve global coherence in network problem solving; (2.) it of a vehicle monitoring task. This presentation emphasizes
serves as an example of how a teetbed can be engineered to permit the how the testbed is structured to facilitate the study of a wide p
empirical exploration of design issues in knowledge-bas d At systems.
The testbed is capable of simulating different degrees of sophistic&- range of issues faced in the design of distributed problem
tion in problem solving knowledge and different focus-of-attention solving networks.
mechanisms, for varying the distribution and characteristics of error in
its (simulated) input data, and for measuring the progress of problem "
solving. Node configurations and communication channel characteris. Characteristics of Distributed Problem Solving.
tics can also be independently varied in the simulated network.

Distributed Problem Solving (also called Distributed P
A Project A I*Ke and complex a the Distributed Vehicle Monitor- Al) combines the rm-earch interests of the fields or Al and
ing Tethed involved a number or individuals and became itself a dis. Distributed Processing (Chandrasekaran 1981; )avis 1980,tributed problem solving task. The efforts of Richard Brooks, Eva

Iludlicks. Larry Lerkowits, Roam Mukunda, Jasmine Psvlin. and Scott 1982; Fehling & Erman 1983). We broadly define dis-
Reed contributed to the tctea or the teethed. We would also like to tributed problem solving networks as distributed networks
acknowledge I"e Erman's collaboration on the initial formulation or the of semi-autononots problem solving nodes (procevsing el-
Functionally Accurate. Cooperative approach and his work on the pilot ments) that are capable of sophisticated problem solving and
experiments. This research was sponsored, in part, by the National cooperatively interact with other nodes to solve a singl prol.-
Science Foundation under Grat M~-8006327 and by the Defense Ad-
vanced Research Projects Agency (DOD). monitored by the Ofrnce of lem. Each node can itself be a sophisticated problem solving
Naval Remerch under Contract N1t049-041. system that can modify its behavior as circumstances change e-
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ad P6 its own communication and cooperation strategies cooperative interactions of tasks to solve a single problem..
with oter nuds. As will be diactuted later, highly cooperative task interne.

Distributel problem solving is an important research Lion is a requirement for many problems that neem naturally - :.
are hr several reasons. First, hardware technology has suited to a distributed network.
advanced to the point where the construction of large dis- .

tributed problem solving networks is not only possible, but
economically fesible. While the first networks may consist Distributed Problem Solving
of only a small number of nodes, distributed problem olv- and Artificial Intelligence
ing networks may eventually contain hundreds or thousands
of individual nodes. We are nearing a situation or excit- Distributed problem solving also differs from much of
lag hardware possibilities unaccompanied by the problem the work in Al because or its emphasis on representing prob-
solving technology required for their effective utilization. lem solving in terms of asynchronous, loosely-coupled procem
Second, there are Al applications that are inherently spa- networks that operate in parallel with limited interprocer.
tially distributed. A distributed architecture that matches communication. Networks or cooperating nodes are not new
their spatial distribution offers many advantages over a to artificial intelligence. However, the relative autonomy and
centralized approach. Third, understanding the process or sophistication of the problem solving nodes, a direct con.e-
cooperative problem solving is an important goal in its own quence of limited communication, sets distributed problem
right Whether the underlying system is societal, managerial, solving networks apart from most others, including Hewitt's
biological, or mechanical, we seem to understand competi- work on the actor formalism, Kornfeld's ETHER language, "
tion far better than cooperation. It is possible that the devel- Lenat's BEINGS system, and the augmented Petri nets of zis-
opment of distributed problem solving networks may serve man (Hewitt 1977, Kornfeld 1979, Lenat 1975, Zisman 1978).
the same validating role to theories in sociology, manage- The requirement for limited communication in a distributed
ment. organizational theory, and biology as the development network has also led to the development of problem solving -

of Al systems have served to theories of problem solving and architectures that can operate with possibly inconsistent and if
intelligence in psychology and philosophy. incomplete data and control information. In many applica- .

Although this new area borrows ideas from both Al and tions, communication delay makes it impractical for the net- "
Distributed Processing, it differs significantly from each in work to be structured so that each node has all the relevant
the problem being attacked and the methods used to solve information needed for its local computations and control -
these problems. decisions. Another way of viewing this problem is that the

spatial decomposition of information among the nodes is ill- $'
suited to a functionally distributed solution. Each node mayDistributed Problem Solving possess the information necessary to perform a portion of

and Distributed Procesing each function, but insufficent information to completely per-
form any Function.

Distributed problem solving networks differ from dis-
tributed processing system in both the style of distribution
and the type or problems addressed (Smith & Davis 1981). The Uses of Distributed Problem Solving...
These differences are most apparent when we study the .,ter-
actions among nodes in each or the types of netwrks. A d6s- Most initial work in distributed problem solving has
tributed processit network typically has multiple, disparate focused on three distributed air traffic control, and dis.- .
tasks executing concurrently in the network. Shared access tributed robot systems (Davis 1980, 1982; Fehling 1983). All .
to physical or informational resources is the main reason ror or these applications need to accomplish distributed inter-
interaction among tasks. The goal is to preserve the illusion preation (situation assessment) and distributed planning..-
that each task is executing alone on a dedicated system by Planning here refers not only to planning what actions to
having the network operating system hide the resource shar- take (such as changing the course of an airplane), but also
ing interactions and conflicts among tasks in the network. In to planning how to use resources of the network to carry out
contrast, the problem solving procedures in distributed prob- the interpretation and planning task effectively. This latter (
lem solving networks are explicitly aware of the distribution form of planning encomalmses the clas.ic focus-of-attention
of the network components and can make informed inter- problem in Al.
action decisions based on that information. This difference In addition to the commonality in terms or the generic
in emphasis is, in part, due to the characteristics of the ap- tasks being solved, these application domains are charAc-
plications being tackled by conventional distributed process- terized by a natural spatial distribution of mensors and
ing methodologies. These applications have permitted tAk effectors, and by the fact that the subproblems of both the lo-
decompositions in which a node rarely needs the assistance cal inter)retation of sensory data and the planning of effeetor
of another node in carrying out its problem solving runc- actions are interdependent in time and space. For example.
tLion. Thus, most of the research as well as the paradigms of in a distributed sensor network tracking vehicle movements.
distributed processing do not directly addreM the issmes or a vehicle detected in one part of the sensed area implies that a
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vehicle ofsimilar type and velocity will be sensed a short time Wttu of the teatbed implementation. and outline rutre re- 7..
later in an adjacent area (Figure I). Likewise, a plan for guid- -warch directions.

ing an airplane must be coordinated with the plans of other
nearby airplanes in order to avoid collision. Interdependency Functionally Accurate, Cooperative
also arises from redundancy in sensory data. Often different Distributed Problem Solving
nodes sense the same event due to overlaps in the range of
sensors and the use of different types of sensors that sense
the same event in different ways. Exploiting these redundant Ohei -..

and alternative views and the interdependencies among sub-
problem require nodes to cooperate in order to interpret and problem solving networks for applications in which there i.

plan effectively. This cooperation leads to viewing network a natural spatial distribution or information and procemsing

problem solving in terms or a single problem rather than a requirements, but insufficient information for each proem-

set of independent subproblems. ing node to make completely accurate control and processing

decisions without extensive internode communication (ued
It is difficult to develop a distributed problem solving to acquire missing information and to determine appropriate

architecture that can exploit the characteristics or these ap node activity). An example of this type of application is di-

plications to limit internode communication, to achieve real- tributed vehicle monitoring. Vehicle monitoring is the task
time response, and to provide high reliability. Nodes must of generating a dynamic. area-wide map of vehicles moving
cooperate to exploit and coordinate their answers to inter- through the monitored area. Distributed vehicle monitoring
dependent subproblems, but must do so with limited inter- typically has a number of processing nodes, with assoiated
proessor communication.[This requires the development acoustic sensors (of limited range and accuracy), geographi-
of new paradigms that permit the distributed system to ally distributed over the area to be monitored (laecs
deal effectively with environmental uncertainty (not having 1978, Smith 1978). Each procesasng node can ommunicate --

an accurate view of the number and location or processors, 17 S 1

effectors, sensors, and communication channels), data uncer-
tainty (not having complete and conistent local data at a
node) and control uncertainty (not having a completely ac-
curate model of activities in other nodes).

We see the development of these paradigms as draw-
ing heavily on the work in knowledge-based Al systems and,
simultaneously, making contributions to Al. As Nilsson has .,'
noted, the challenges posed by distributed Artificial Intel-
ligence will contribute to (and may even be a prerequisite for)
progress in ordinary" artificial intelligence ( Nilson, 1980). ... ..

One example of this interaction is the problem of controlling _ _

semi-autonomous problem solving agents possessing only a
local and Possibly errorful view of the global state of problem % %
solving. Solutions being developed for this problem have in-
volved the use of metalevel control, integrated data-directed wow
and goal-directed control, and focus-of-attention strategies _____"_

based on resoning about the state of local problem solving
(Corkill 1983). Approaches similar to these are being used to
solve the control problems that are faced in the development - -L-

of a new generation or centralized knowledge-based problem
solving systems, which have significantly larger and more
diverse knowledge bases.

In the remainder of this article we first describe the Func-
tionally Accurate. Cooperative distributed problem solving , , ____.__- _

paradigm and pilot experiments that explored the viability of
this approach. After describing the issues we wish to explore o ...... ......- ,-.'.-.'."
using the Distributed Vehicle Monitoring Testbed, we present
the vehicle monitoring task, followed by a detailed disci.--
sion of the testbed. Later sections describe how we have jj . .....

quantified system behavior and the use of these measures for
simulating and evaluating the performance of various sys-
tm components, overview the tools that help a user define Figure I.

experiments and analyze their output, review the current TvsckinK Vehicle Movements in a Distributed Senor Network.
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with other nearby nodes over a packet radio communica- high-level, tentative resulL. titan ite communication of raw
ion network (Kahn 1978). Each senuor includes the actual data and processing results, that would he required using

acoustic transducer, low-level signal processing hardware and a conventional distributed proceing app~rech. lIn uddi-
software, and communication equipment necessary to trans- tion. synchronization among nodes can also Ie reduced or
mit the procesed signals to a high-level (symbolic) proceming eliminated entirely. resulting in increas-44l node parallelism.
site. Finally, this approach leads to a more robst network since

As a vehicle moves through the monitoring area, it errors resulting front hardware failure are oitentiadly cor-

generates characteristic acoustic signals. Some of these sig- rectable in the same rashion is errors resulting from the use

nab are recognized by nearby sensors which detect the fee- of incomplete and inconsistent local information.

quency and approximate locatian of the source of the signals.
An acoustic sensor has a limited range and accuracy, and A Pilot Experiment in Distributed Interpretation
the raw data it generates contains significant error. Using
data from only one sensor can result in "identification" of
non-existent vehicles and ghosts, missed detection of actual A set of pilot experiments was performed to investigate
vehicles, and incorrect location and identification of actual the suitability of the FA/C approach using a network of corn-
vehicles. To reduce these errors, information from various plete HEARSAY-Il interpretation systems (Lesser 1980). The
sensors must be correlated over time to produce the answer HEARSAY-l1 architecture appeared to be a good structure .
map. The amount of communication required to redistribute for each node because it incorporates mechanisms for deal-
the raw sensory data necessary for correct localized process- ing with uncertainty and error as an integral part of its basic
ing makes such an approach infeasible, problem solving. Further, the processing can be partitioned

One way to reduce the amount of communication and or replicated naturally among network nodes because it is al-
synchronization is to loosen the requirement that nodes al- ready decomposd into independent and self-directed modules
ways produce complete and accurate results. Instead, each called, knowledge sources., which interact anonymously and
node produces tentative results which may be incomplete, are limited in the scope of the data they need and produce.
incorrect, or inconsistent with the tentative partial results For further information about the HEARSAY-Il architecture
produced by other nodes. For example, a node may produce a see Erman, et al. (1980).
set of alternative partial hypotheses based on reasonable ex- Experiments were performed to determine how the prob-
pectations of what the missing data might be. In the vehicle lem solving behavior of a network of HEARSAY-Il nodes com-
monitoring task, each node's tentative vehicle identification pared to a centralized system. Each node was completely
hypotheses can be used to indicate to other nodes the areas self-directed in its decisions about what work it should per-
in which vehicles are more likely to be found and the form and what information it should transmit to other nodes.
details (vehicle type, rough location, speed, etc.) of probable The aspects of behavior studied included the accuracy of the
vehicles. This information help a node to identify the actual interpretation, the time required, the amount of internode
signals in its noisy sensory data. In addition, consistencies communication, and network robustness in the race of com-
between these tentative identification hypotheses serve to munication errors. These experiments simulated only the dis.-
reinforce confidence in each node's identifications. Such tributed hardware - they used an actual HEARSAY-Il speech
cooperation is not only appropriate for vehicle identification, understanding system analyzing real data. A spatial di"-
but also potentally useful in other stages of processing tribution of sensory data was modelled by having each node , -
(identification of'raw signals, groups of harmonically related of the distributed speech understanding network sample one"
signals, patterns of vehicles, etc.). part (time-contiguous segment) of the overall speech signal.

This type of node processing requires a distributed prob- The experiments showed that a network of three IEAR-
lem solving structure in which the nodes cooperatively con- SAY-Il speech understanding nodes performs well as a coopera-
verge to acceptable answers in the face of incorrect, inac- tive distributed network even though each node has a limited
curate, and inconsistent intermediate results. This is ac- view of the input data and exchanges only high-level (phrasal)
complished using an iterative, coroutine type of node in- partial results with other nodes. In an experiment with er-
teraction in which nodes' tentative partial results are itera- rorful communication, network performance degraded grace-
tively revised and extended through interaction with other fully with as much as 50% of the me.sages lost. indicating
nodes. A network with this problem solving structure is that the system can often compensate automat ically for the
called Functionally Accurate, Cooperative (FA/C) (Leser lost messages by performing additional computation.
1981). 'Functionally accurate" refers to the generation of Although these experiments were extremely positive.
acceptably accurate solutions without the requirement that they did point up a key issue in the successful application ..-.. --

all shared intermediate results be correct and consistent of the FA/C approach. This issue. which we feel is al'
(as is the case with conventional distributed processing). important for the design of any cotmplex distriiamtuil proh-

-Cooperative" refers to the iterative, coroutine style of node lets solving network, is that of o aining at sullicient level of
interaction in the network. The hope of this approach is cooperation and coherence among the activitiem of the se mi-
that much les communication is required to exchange these autonomous, problem solving nodes it% the network (Davis &.
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Smith 1102. Corkill I62). If this coherence is not achieved, of authority relationship should exist among nodes
then the performance (speed and accuracy) of the network Should nodes be completely nelf-directed or should
can be sgnificantly diminished as a result of lost processing there be certain nodes that decide explicitly what
as nodes work at cr -purgrnm with one another, redun- other nodes should do. or should there be a nego-da nody wrk appt pre~in ; wit one . apli ters, aund tiation structure among nodes (Smith & Davis 1981)?
danly applied process~ing as nodes duplicate efforts. and Similarly. should inrormation he transmitted on a
misallocation of activities so that important portions ot the voluntary howis or only when requested or some mix-
problem are either inaccurately solved or not solved in timely Lure or these policies?
fashion.

In the pilot experiments with the three-node network. The candidate task characteristics to evaluate included
we observed that the simple dote-directed and sel-directed the size of the network and the communication topol-
control regime used in these experiments can lead to non- ogy; the type, spatial distribution, and degree of uncer-
coherent behavior (Lesser 1990). Situations occurred when tainty in information; the quality or knowledge in the net-
a node had obtained a good solution in its area of interest work;interdependencies among subproblems; and the size of
and, having no way to redirect its attention to new problems, the search space.
simply produced alternative but worse solutions. Another Unfortunately, it was difficult to extend the distributed
problem occurred when a node had noisy data and could not HEARSAY-l speech understanding system for these studies.
possibly find an accurate solution without help from other There were two major reasons for this difficulty: the com-
nodes. In this situation, the node with noisy data often putation time needed to run experiments and inflexibilities
quickly generated an inaccurate solution which, when trans- in the design of the system. We discuss these reasons be-
mitted to the nodes working on better data, resulted in the cause they point out why extensive experimentation with
distraction of these nodes. This distracting information in large knowledge-based Al systems is very difficult.
turn caused significant delay in the generation of accurate The use of an existing knowledge-based system as the

solutions by nodes with accurate as well as noisy data. We basic underlying problem solving system in the experiments
believe that development of appropriate network coordina- lent credibility to the simulation results and also avoided
toon policies (the lack of which resulted in diminished net- the extensive knowledge engineering that normally would
work performance for even a small network) will be crucial to have been required. The importance or having a concrete
the effective construction of large distributed problem solving framework to explore ideas cannot be underestimated. Not

" networks containing tens to hundreds of processing nodes. until the problems or getting the HFARSAY-I speech un-
derstanding network to work appropriately in a distributed

The Need for a Tetbed setting were confronted did many of our intuitions about
how to design distributed problem solving networks evolve.
However, there were major negative implications of using

Although these experiments provided intitial empirical the real HEARSAY-I speech understanding system. First, it
validation for the FA/C approach and pointed out an impor- was extremely time consuming to run the multi-node simula-
tant set of issues that needed to be solved, they were just a Lions since the underlying problem solving system was large
first step. These experiments were not based on a realistic and compuationally slow. Second, the speech understand-
distributed task, and more importantly were limited in the ing system did not naturally extend to larger numbers o
scope of issues that could be addressed. Thus, a more ex- nodes and more Vmplex communication topologies without
tensive set of empirical investigations was necessary in order significant changes to the system. 1 part, this is because
to better understand the utility and limitations of the FA/C the speech task is not a realistic distributed processing task
approach. Empirical performance measures were needed for and its sensory data is one-dimensional (the time dimen-
a wide range or task and problem solving situations in order sion). Third, efficiency. considerations in the design or the
to evaluate and analyze the following issues: speech understanding system led to a tight coupling among

knowledge sources and the elimination of data-directed con-
"$Sci-cortrectg co imp w structures: What and how trol at lower blackboard levels. This tight coupling precluded
much uncertainty and error can be handled using the exploration of many interesting network architectures.
these types of computational structures? What are It was not possible to configure nodes with only a partinl
the costs (and trade-offs) in processing and corn- et or knowledge sources without significant modifications to
munication to resolve the various types or errors?
How does the quality o knowledge used in the net the knowledge source interaction patterns. Fourth, the sheer
work affect the amount of uncertainty and error that size and complexity of knowledge source code modules made
can he a eomodatd? modification a difficult and time consuming process.

" Ts* choretenalies and te sletiM of an appriate Basically, the flexibility o the HIEARSAY-Il speech ut-
network corivomulrati: What characteristics of a task derstanding system (in its final configuration) wa sullicient
can be used to seelet the network conl guration al- to perform the pilot experiments, but was not appropriate for
propriate for it? When should problem solving more extensive experimentation. Getting a large knowledge
among nodes be organised hierarchically? What type based system to turn over and perform creditably requires
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a flexible initial desigo but., paradoxically. this flexibility is Real distributed problem solving applicatious are dillirult
often engineered out as the system is tuned for high per- to construct due to the large knowledge acqiisition and en-..
formance. Extensve experimentation. if not originally ron- gincering effort required, and once built, they art- dillivil.h

ceived and maintained al a goal of the system design, is a to instrument and modify for experimentation. Thu,. it iN
difficult tank. difficult and expensive to gain thene exiperienes. by devehlo-

ing a "real" distributed problem solving application in all it. •.

% detail."[The Distributed Vehicle Monitoring Testbed l. et r'g .L~ikewise, we see the formal mclelling route. Its uot Vi- i'.

able. The research in distributed problem solving i, still in

This section introduces the distributed vehicle monitor- its infancy and formal analytic approaches are not yet avail-

ing tetbed, a flexible and fully-instrumented research en- able. Underlying, the development or analytical approaches

vironment, construeted for the empirical evaluation or al- are intuitions gained from experiences with actual systems.
Without sufficient intuitions for appropriately simplifying

ternave designs for functionally accurate, cooperative dis-tribt Jprolemsolvng etwrks Theconeptor he nd abstracting network problem solving, the development, or
iuted prblesolvh a model that is both mathematically tractable and accurate

teetbed evolved from: sdfiutis difficult.

. An understanding of both the difficultes and im- Our hope is that the testbed will provide the appropriate
portance of an empirical approach to issues in dis. environment for acquiring this experience and will even-
tributed problem slving; tually be useful in evaluating the accuracy of the analyti-

0 The need for a realistic environment for exploring cal models.2 Especially important are experien em with large
new paradigm for obtaining global coherence. distributed problem solving networks or ten to hundreds or

nodes. It is with networks of this size the we expect tosee
Here, the motivation for the teatbed, its basic structure, s problems of cooperaton and coherence dominate and

adits parameterization and measurement capabilities are tepolm rcoeainadchrnedmnt n

described, where important intuitions about how to design distributed
problem solving networks will arise.

In summary, the empirical approach taken here repre-
Motivation senta a compromise between the reality or an actual system

and simplicity of an analytical model. We have abstracted

Our approach to designing the testbed was to: the task and simplified the knowledge but still are per-
forming a detailed simulation or network problem holv-

i. Take a realistic distributed problem solving task and ing. It should be mentioned that even with significant
appropriately abstract it to reduce the problems of simplifications the building or the teutbed was a substantial
knowledge engineering, to speed up problem solving, implementation effort. However, in contrast to the construe-
and to make it 5 IDmt@ generic Slnd par~met~i'asi able Lion of a *real" application where considerable effort must be
task;"-", .spent in knowledge engineering, our efforts have been spent in

2. Develop for this abstracted task a distributed prob- parameterising the problem-solving architecture and making
lem solving system that can model (through ap- the testbed a useful experimental tool.
propriate parameter etignp and pluggable modules
or code) a wide clan or distributed problem solvingi -.

architectures; Why 0%tributed Vehicle Monitoring?
3. Create a simulation system that can run this dis.

tributed problem solving system under varying en- Distributed vehicle monitoring has rour characterislic,
vironmental scenarios, different node and communica- that make it an ideal problem domain for research on dis-
tion topologies, and different task data. tributed problem solving.

We feel that this approach is the only viable way to gain First, distributed vehicle monitoring is a natural task for
extensive empirical experience with the important issues in a distributed problem solving approach since the acoustic

the design of distributed problem solving systems. In short, sensors are located throughout a large geographical are,.

distributed problem solving networks are highly complex. The massive amount of sen.s)ry data that anmst lw rdtied

They are difficult to analyze formally and can be expensive to a highly abstract, dynamic map "ms aprri for

to construct, to run, and to modify for empirical evaluation, distributed apprach.
Second, distributed vehicle monitoring can 1e for -"'

latec jut an interpretation task in which inlformatioti is ii,- ...

'We had. in (awt. earlier embarked on the development of much an cremeally agregated to generate t he answer irai. Nilss "n
environment, based on what we called the )itributed Processing Game e- a
(L, fr k Corkill, 197s). but failed. This venture failed htau.,r we-
had hmsn a appliestien for which the knowledge engineering waa so 2The teethed is already beginning to be umed in this manner. the
inmpl md our ndestadlung of the task was so vague that we could work by Pavlin (1963) on initial attempts at formulating a maloeirl fo
ft devlP sfit It~ k awd for the system to turn over, distributed intcepret~ation systems.
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has termd 1"44M with this Characteritic Commutative (s clopely as ponsible) the data that would he geriernl1d i.
(Niisunm lM). an actual distributed vehicle monitoring network s;A well A

Commutative systems have the following propertie: the effect or knowledge and control strategies om that. data.
1. Actions that are pomible at a given till" remain 0 This approach also allows users or the tetbed to reiive

ible ror all future times, concrete feedback about how their algorithm% are ierrorni-
ing. However, because the purlKxxe or hiiildi.g tt. t,%olxi.

2. The system state that results fromn ierrorming a se-
quence or actions that are pomible at a given timei is to evaluate Alternative distributed prolem -oviiig no-

work designs rather than to construct an actual distrihteld
vehicle monitoring network, a number or simpliticatiois or

Commutativity allows the distributed vehicle monitor- the vehicle monitoring task were made (Table I). The goal or
ing network to be liberal in making tentative initial vehicle these simplifications was to reduce the proce-wing complexity
identifications, since generation of incorrect information and knowledge engineering effort required in the lesthed
never precludes the later generation of a correct answer
map. Without commutativity. the basic problem solving
task would be much more dilicult. The major task simplifications in the Distributed

Although the generation of the Answer map is commuta- Vehicle Monitoring Tested include:
tive, controlling node activity is not. Here we enter the realm 9 The monitoring area is expressed as a two-dimenional
or limited time and resources. If a crucial aspect of the square grid, with a maximum spatial resolution of one
answer map is not immediately undertaken by at least one unit square.
node in the network, the network can rail to generate the map
in the required time. In the determination of node activities, e The environment is not sensed continuously. Instead.
mistakes cause the los or unrecoverable problem solving time it is sampled at discrete time intervals alled time

and can therefore eliminate the possibility of arriving at a frames.
timely answer map. If the nodes and sensors are mobile, Frequency is represented as a small number or fre.
their placement adds another non-commutative aspect to the quency chieL
distributed vehicle monitoring task; a misplaced node or sen-
sor can require substantial time to be repositioned. (We are Communication from sensor to node uses a different
currently limiting our investigations to stationary nodes and channel than interode communication.
sensors.) * Internode communication is subject to random loss,

Third. the complexity of the distributed vehicle monitor- but if a message is received by a node it is reeived
ing task can be easily varied. For example: without error.

e Increasing the density of vehicle patterns in the * Sensor to node communication errors are treated as
environment increases the computational and con- sensor errors.
munication load on the network. * Signal propagation times from source to sensor are

e increasing the similarity or the vehicles and patterns processed by the (simulated) low-level signal pror mm-
known to the network increases the effort required to ing hardware of the sensor;
distinguish them.

% Inreaing the amount oerror in the senory da9in- Sensors can make three types of errors: asilure to
creas the effort required to dsriminateoise from detect a signal; detection o a non-existent gnal: ad
reamthe incorrect determination of the location or frequencyreality, or a signal.

Fourth, the hierarchical task processing levels coupled * Sensors output signal events, which include the loca-
with the spatial and temporal dimensions of the distributed tion or the event (resolved to a unit square). time
vehicle monitoring task permit a wide range of spatial, Lem- frame, frequency (resolved to a single frequency c.lt),

poral, and functional network decompositions. Node respon- and belief (based on signal strength).j sibilities can be delineated along any combination of these * Incompletely resolved location or frequency of a .ignal
dimensions. is represented by the generation or miiple iKnal

An important decision in the design of the testhed was events rather than a single event with a rsnge of
the level at which the network would be simulated. An values.
abstract modeling level, sueh as the one used by Fox (1979). * Nodes, sensors and internode comnwnirmtion cin.

that represents the activities or nodes as average or prob- s c t o l rm l i i"Itnels can temporarily or permanently GOi willimo.....
Abilistic values accumulated over time would not capture the warning.
changing intermediate processing states of the nodes. It is wanig

: precisely those intermediate states that are so important in Table I.
both building and evaluating in a realistic way different net- The Simplified Vehicle Monitoring T&Ak.

i work coordination strategies. Instead, the teatbed duplicates ,.._..-
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without significantly changing the basic character or the dis-
tributed interpretation task.

A second design decision was to instrument the testbed Resolver
fully. The teatbed includes measures that indicate the C'-" onsistency

quality of the developing solution at each node in the net- Scheduling . Scheduler Blackboard

work. the quality of the developing solution in the network as Fuues - Schedule
a whole,. and the potential effect of each transmitted message ntrs *

on the solution of the receiving node. This is made possible IAres

actual problem solution. : o
A third decision in the design of the testbed was to make Goal Data

it parameterised. Experience with complex artificial intel- Panner Blackboard Blackboard
ligence systems demonstrated the difficulty of experiment- / __oa_ _ei __ ' I /  Resolver
ing with alternative knowledge and control strateg~ies. As

a result, potential experimentation with the system is often Goal-not performed. Incorporated into the testbed are capabilities KS Table

for varying: Goal -
Subgoal I8 Monitor

a The knowledge sources available at each node, per- Table
mitting the study of different problem solving decom-
positions;
The accuracy o individual knowledge sources, per- Event -
mitting the study or how different control and com- Goal

munication policies perform with different levels of Table

sseexpertise;.
a Vehicle and sensor characteristics, permitting control

of the spatial distribution of ambiguity and error in Figure 2: Testbed Node Architecture.
the task input data;

a Node configurations and communication channel charac-
teristies, permitting experimentation with different
network architectures;

* Problem solving and communication responsibilities
or each node, permitting exploration of different HEARSAY-lI 4 system (Erman et al. 1980). capable or solv-
problem solving strategies; ing the entire vehicle monitoring problem if it is given all or

a The authority relationships among nodes, permit- the sensory data and makes use of all or its knowledge. This ..ting experimentation with different organizational permits any subset of the knowledge sources to be used at a
relationships among nodes, node and allows the simulation or a single node (centralized)

The result is a highly flexible research tool which can be System to provide a benchmark ror various distributed net,
used to explore-gipirically a large design space of possible works monitoring the same environment.
network and environmental combinations. The basic HEARSAY-Il architecture has been extended in

each testbed node to include the capability of communicating

Teothed Node Architecture hypotheses and goals among nodes, more sophisticated local
control, and an interface to meta-level network coordination
components (Corkill 1981, 1982, 1983). In particular, com-
munication knowledge sources, a goal blackboard, a plan-The Distributed Vehicle Monitoring Testbed simulates ning module, and a meta-level control blackboard have been

a network or HEARSAY-Il nodes working on the vehicle added (Figure 2). The tstbed also has several eomponcnt"
monitoring task. Each node is an architecturally-complete that arc used to measure the performane of each node and

Lhe overall network and to vary the "intelligence" ot ach.
TlThe quality of the knowledge used by each node to distinguish be- node's knowledge sources and scheduler. Theme component.

twea eoneistent and inconsistent data plays a major role in the suc. are the consitency blackboard and the knowledge source and
cm of a functionally accurate, cooperative approach. A network using scheduler resolver.'
low quality knowledge is unable to detect subtle inconsistencies among se,-"r
tentative partial results and may be unable to arrive at an acceptable

iolutnio. As the quality of knowledge used in the network is improved,the network should generate an answer with greater accuracy in les The Structure of the Data Blackboard

4Wu"h knowledge appropriate for the task of vehicle monitoring. i Hypothesized vehicle movements are reprr.-nted on the V.
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does blackboard. This blackboard is partitioned into four answer sites within the monitored area and one where a paur-
tsk abstraction levels: signal, group, vehicle, and pattern tial (spatially relevant) map is to be located at nunu'rous sit s
(Figure 3). Signals are at the lowest abstraction level and are within the area. In distributed vehicle monitoring tusks stih
the output of low-level analysis of sensory data. Each signal As air or ship traffic control, both distributions of the answer
includes the frequency, approximate position, time frame of map may be required. Each nide might use its portion of tih
detection, and belief (based partly on signal strength and distributed map to control nearby vehicles, while the coin-
sensor quality) of the acoustic signal as well as the identity plete map might be produced for external monitoring or the

%! of the detecting sensor. Signals are the basic input to the network.
problem solving network. Each of these four abstraction levels is further divided

At the next level in the data hierarchy are signal into two levels, one containing location hypotheses and one
groups. A group is a collection of harmonically related signals containing track hypotheses. A location hypothesis repre-
(emanating from a common source). Each group includes %ent a single event at a particular time frame. A track
the fundamental frequency of the related signals and its ap- hypothesis represents a connected sequence of events over a
proximate position, time frame, and belief (a function of the number of contiguous time frames.
beliefs and characteristies of the related signals). These orthogonal partitionings result in the eight black-

Vehicles are the next level in the data hierarchy. A board levels shown in Figure 4. Location hypotheses are
vekici consists of a collection of groups associated with a formed from location hypotheses at the next lower abstrac-
particular vehicle. Vehicles include the identity of the vehicle Lion level. Track hypotheses can be formed from loca-
and its time frame, approximate position, and belief. ion hypotheses at the same abstraction level or from track

At the highest level of processing are vehicle patterns, hypotheses at the next lower level. The task processing level
A pattern is a collection of particular vehicle types with a most appropriate for shifting from location hypotheses to

particular spatial relationship among them. Patterns were track hypotheses is dependent on the problem solving situs-
included in the testbed to investigate the effects of strong tion.
constraints between distant nodes. A pattern includes the The relationships among the hypotheses at each level is

supplied to the testbed as part of a testbed grammar. Chang-
ing the grammar automatically varies behavior throughout
the testbed. By increasing the size and connectivity of the
grammar, the interpretation task can be made more difficult.
Another aspect of a testbed grammar that specifies the

vehicle Paneama difficulty of the interpretation task involves tracking vehicle

movement. The tracking component of a testbed grammar
contains two values: the maximum velocity of a vehicle (and

ehcvles implicitly, events at all levels) and the maximum acceleration
of a vehicle. These values are used in the creation and ex-

tension of track hypotheses. By reducing the constraints on
vehicle movement, the tracking task becomes more difficult.

~nM Knowledge Source Processing

Signals An important consideration in developing the set of
knowledge sources for the testbed was to structure processing
so that information could be asynchronously transmitted and

Figure 3. Vehicle Monitoring Task Processing Levels, received at any blackboard level. This permit-, exploration

Forming a vehicle pattern from sensory signals involves com- of a wide range of different processing decompositions based
bining harmonically related signals into signal groups. Various on partially configured nodes (nodes without all knowledgesignal groups can collectively indicate a particular type of sore)without modifying the knowledge isotiroe nmfhulf. " '% '

vehicle. Specific vehicle tvpes with a particular spatial and local control structures.
relationship among themselve, form a vehicle pattern. There are six basic problem solving activities ierfor"ed

elby the processing knowledge sources in the testbed. They
Are: Location SgemL~csu Abstracting location hypothese at-" "'

identity of the pattern and it. time frame, approximate pXoi- Lon lothes bloain location hyp.thei -

one level ofthe hlaktmard into a new ocation hymthesi
Lion. and belief. A single vehicle can be a pattern. st the next higher location level.

The desired solution, or answer map, is produced from
the vehicle patterns based upon their beliefs and continuity 7Vack Symties, -u Abstracting track hypotheSes At one
over time. There are two types of answer map distribution: level of the blackboard into a new track hypothesis at
one where a complete map is to be located at one or more the next higher track level.
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Details of Goal Processing in a Node

* i answer In order to permit more .sophisticated forms of coolsera.
map Lion among nodes in the system, we have integrated goal.

directed control into the data-directed control strsctuire
I ., or the basic llEARSAY-II architecture. This ha.s been a(-I complished through the addition of a goal blackboard and a

, planner.
PT The goal blackboard mirrors the structure of the data

blackboard. Instead of hypotheses, the basic data units are
PLt goals, each representing an intention to create or extend a

hypothesis with particular attributes on the data black bo&,. d.
VT For example, a simple goal would be a request for the creation

of a vehicle location hypothesis above a given belief in a
\specified area of the data blackboard.'

VI Goals are created on the goal blackboard by the black-
board monitor in response to changes on the data black-
board. These goals explicitly represent the node's intention
to abstract or extend particular hypotheses. Goals received
from another node may also be placed on the goal black-

Gi board. Placing a high-level goal onto the goal blackboard
of a node can effectively bias the node toward developing a

ST solution in a particular way.The planner responds to the insertion of goals on the
goal blackboard by developing plans for their achievement.

SL and instantiating knowledge sources to carry out those plans.
4 The scheduler uses the relationships between the knowledge

source instantiations and the goals on the goal blackboard
as a basis for deciding how the limited processing and com-
munication resources or the node should be allocated.

sensory
data Communication Knowledge Sources

Figure 4. Blackboard Levels in the Testhed. Internode communication is added to the node architec-
The eight blackboard levels in the tested are: location Lure by the inclusion of communication knowledge sources.

(SL) signal track (ST) group location (CL) group track These knowledge sources allow the exchange of hypothes
(CT) vehicle location (VL) vehicle track (VT) pattern
location (PL) pattern track (PT). The arrows indicate and goals among nod. the same independent and asynch-
the rour possible synthesis paths from sensory data to ronous style used by theother knowledge sources. There ra
generation of the answer map. six types of communication knowledge sources in the testbed:

Hlypoise Send - Transmits hypotheses created on the
Thick Formation - Combining a location hypothesis in blackboard to other nodes based on the level; time frame,
one time frame with a "matching" location hypothesis location, and belief of the hypothesis.
in an adjacent time frame to form a one-segment track Hwothuu Recev Places hypotheses received rrom
hypothesis. ,eh.

other nodes onto the node's blackboard. Incoming
7'l'ack Eztetnao - Extending a track hypothesis into sit hypotheses are filtered according to the characteristics
adjacent time frame by combining it with a "matching- o the received hypothesis to ensure that the node is in.
location. terested in the information. Ilypothesis Receive uses a

simple model of the credibility of the sending node to
possibly lower the belief of the received hypothesis beforeLOcation-lo-nck Joining Taking a location hypothm~i..ti lce nteblcbad

and combining it with a "matching" track hypothesis it is placed on the blackboard.

that begins or ends in an adjacent time frame.
eAn important mppert it the atructure or the integrated control mr.

Treftk Mervllf - Merging two overlapping or abuttinig chitecture in a correspondence between the blackboard area covered by
track hypotheses into a single track hypothesis at the the goal and the blackboard area of the desired hypothesis. This cor.
Minte abstraction level. respondence allows the planner to relate goal* and hypothesm quickly.
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C-ad &ad Transmits goals created on the goal black- ilKoel for Analyzing how a IIEAPSAY-I1-like svstenll rot-
board to other noh4s basd ol the level. Lile rratms. s.l.rorL it. anr-urate solut ion and resolves the sn.eril.iy mi-l

* regions. ad rating or the goal. (oal Send transmiits error in iLs initia dA. (lA.-er 1980). This nev.wmre ita're'at-"
goals based on lneta-k*vcl control infornsation whether as the systen Ilnecomes ilore certain of the. (on(sisittnic'y or
or not the node i. to attempt 141 achieve the goal Iocally. correct- hymithese, tirol tlecrea.e sm the syst.i, INm.,ii.li m

Coal Icllp Tran.smits goals that the node's planner hiu. inore (.riJti of the con.sitency of "incorrect" hItagLh L "..s.

determined cannot I satisfied locally (possibly after ex- The "correct."es of hylOthess is obtained from, a hi.dde'-
ecuting a nammt,,r of local problem solving knowledge data structure (alled the consistency blackboard, which i%

sources). precomputed from the simulation input, data. This black-

Cau Receiv Places goals received from other nd board holds what the interpretation would Ib at each intror-

* onto the node's goal blaekboard. Incoming goals are igation level ir the system worked with perfect, knowledge.
filtered according to the characteristics of the received This blackboard is not part of the basic problem solving ar-
goal to ensure that the node is interested in receiving ehitecture of a node but rather is used to measure iroblem.

* goals of that type. Goal Receive uses a simple model of solving performance from the perspective or the simulation
the nodes authority relationship with the sending node input data. The consistency blackboard is also used to mark
to possibly lower the rating of the received goal before consistent and false hypotheses (and the activities Associated
it is placed on the blackboard. with them) in system output.

Coal Reply Transmits hypotheses created on the black-
board in response to a received goal requesting informa- Modifying Knowledge Source Power
Lion from the node.

. Experimentation with more complex versions of these One parameter that can have a significant effect on the
communication knowledge sources is easily accomplished by performance of the network is the problem solving exper-
simulating a more sophisticated knowledge source by: tise of the nodes. The ability of a knowledge source to

detect local consistencies and inconsistencies among it, inlpt
* modifying its power (ci. Modlifying Knowledge hypotheses and to generate appropriate output hypothe.ses

Source Power); is called the power of the knowledge source. Knowledge
o modifying the code of the knowledge source to use source power ranges from a perfect knowledge source able

more sophisticated knowledge in its choices (this can to create output hypotheses with beliers that reflect, even the
done by adding code that filters the input or output most subtle consistencies among its input hypotleses down' of the knowledge source);-
otenlgsr)to a knowledge source that creates syntactically legitimate

" completely replacing a knowledge source with an al- output hypotheses without regard to local consistency and
ternaLve module. with beliefs generated at random. Note that a perfect

knowledge source is not the same as an omniscient one. A
perfect knowledge source can still generate an incorrect out-

Measuring Node and Network Performance put hypothesis if supplied with incorrect, but completely j
consistent, input hypotheses.

An important aspect of our use of the testbed is measur- The testbed can modify the power of a knowledge source
ing the relative performance of various distributed prob- to be anywhere along this rane This is achieved by separat-
lem solving configurations and strategies. For example, we ing each knowledge source I11"o two stages: a candidate
conjecture that in a network with accurate knowledge and generator and a resolver. The candidate generator stage
with input data that has low error, organizing the system produces plausible hypotheses for the output of the know-
hierarchically and using an explicit control and communica- ledge source and a.signs each hypothesis a tentative belier
tion strategy would be effective. Likewise, we conjecture value. The candidate generator stage for each knowledge

J! that in systems with weaker knowledge sources and with source in the testbed incorporates relatively simple domain
more errorful input data, more cooperative and implicit knowledge. There are two types of knowledge used in the
control/communication strategies are desirable. candiate generator to form possible output hypothe.ses bnsed

In order to understand the reasons for differences in the on patterns of input hypotheses. One type of knowlige
performance characteristics of alternative systems organiza- derives patterns from the particular testbed grammar aild
Lions, dynamic measures are needed that take into account knowledge of sensor error characteristics. The other tple

. the intermediate state of system processing and thus permit of knowledge is used to compute a belief for each ouatliut
observations of performance over time. For example, one way hypothesis using the beliefs of the input hypot h"ees and"
of measuring the effectivenes of different communication knowledge about the relative consistency of the iiput pat-
strategies is to develop measures that evaluate the effect of tern. All of the knowledge used by the candidate generator is
each transmitted message on the current processing state of easily varied through either parameter settings or piUggahle
the receiving node. The need for measuring the intermediate code modules.
states of procesing have led us to develop a semii-formal The next stage. the resolver, msts information providled %4
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b thecona-to!tncy blackboard to titininaIy alter thle initial different control strategies (for example. the performance of
bciwvabt-4Or impiat-4iic.hypth(-w-. toacheve oi ithierarchical network versiot a laterally organized tiet work).

Ilhe average'. a kno~wledge sotirci or thte chaird power. Thew Tlhe twcond aspect is tile ability to augV11 ii tile Iasic Ltc.iwc
hvjrtlme.-A- with Ilse higmesi. altered belicfs are' then ustd by niode architectuare with additional control consponenLs (fr
tilt- rE?-)lver stage ws the actujal oututj)L 1iytlIWsts Or tilt- examplc, adding at nieta-lt'vel control ('olliplieit that varit's

* kntowledge s'ource. the organizational relationsip s among sxxdc, dvilatiically).
' rise alteration or hypothesi.. belief yalta,- by Lte resolver lioth types of experiment~ationl are possible with' tie tt'st.lb'~l.

stage cast be us-ed to simulate Lte detectioll of more Wu~ide This section tliscus.tes how Lte local node control architectuire
* fornms of local consistency than is provided by the candidate has been structured to accomplish both types of experinienl-
* generator's knowledge (and thereby increase the apparent tation.

power of the knowledge source). Hypothesis belief alteration
can also be used to degrade tile performance or the candidate Itrs ra
generator (and thereby reduce the apparent power of the Itrs ra
knowledge source).' A key aspect or the control framework implemented ill

Even with the flexibility and detail of our approach, the tcstbed is the use or a nonprocedural and dynamically
there are limitations: variable specification of the behaviors or each local node's

a Our simulation or knowledge source resolving power planner, its scheduler, and its communication knowledge
*is based on a combination or simple knowledge about sources. Called interest areas, these datat structures reside on
*local consistency and reference to an oracle. while the meta-level control blackboard and are used to implement

real knowledge sources attempt to infer truth from particular network configurations and coordination policies.
local consistency alone (and falsehlood from local in-Thraesistsoinrstrasoracndente

*consistency).' T h~ereaesxstdritrs:aesfrec oei h

o The behavior of different simulated knowledge sources tsbd

sharing similar errors in knowledge will not be cor- Local Processing Interest Arease - Influence the local prob-
related due to our statistical approach to knowledge lem solving activities in the node by modifying the

*source simulation. priority ratings of goals and knowledge source instan-
tiations and the behavior or the node's planner and

Given these limitations, we do not expect a simulated scheduler.
knowledge source to behave exactly as a real knowledge Ifpohesi Tansisio Interest Areas - influence the be-
source. We reel, however, that the essential behavior or havior or KYP-SEND knowledge sources in the node.
each knowledge source has been captured so that system
phenomena are adequately simulated. Iiypolhiu Reception Interest Areas - Influence the be-

havior of [fYP-RECEIVE knowledge sources4 in the node.

Local Node Control in the Teatbed Coal Traensmission Interest Areas - Influence the behavior
of GOAL-SEND knowledge sources in the node.

Coal Help n~ansnnission Interest Areas Influience the be-
An important capability or the testbed is the ease with havior of GOAL-HiELP knowledge sources in the node.

which alternate control and communication strategies can be Coal Reception Interest Areas - Influence the behavior of
explored. This exploration has two aspects. The first i~he VCOAI-RECEIVE knowledge sources in the node.

* ability to perform experiments comparing the performance of
_________________________________________ Each interest area is a list of regions of t he data or goal

GThe work by Paxton on the SRI speech understanding system (Paictan blackboard.
1978) comes closest to our approach. He used ground consistency in- Each local processing interest area has a single parameter

format ion to simulate statistically the output of the low level acoustic associated with it: a weight specifying the imtportatnce or per-.
processor in the SRI speech system. Our approach differs from Pax.- forming local processing within the interest area. Transmis-
I on& in that it dynamically relates characteristics of the inputs of a sion interest areas (hypothesis transmission. goal transims--
knowledge source to the characteristics of its outputs, while Paxton's sion, and goal help transmission) are specifiedi ror one or more
doe% not. The output or his model depends on precomputed behavioral lsso oe htaet eev nomtoifou h oe
ostislics wvhich are independent of the belief values and consistency i.t rndsta r orcieifritci rmtente
islues of its inputs. Because or this difference, we are able to simulate Similarly, reception interest areas (hylstiesii reception and
any or all knowledge sources in our system, while Paxton's model is goal reception) are specified for lists; of node- that are to
%slid only for front-end processing of input data similar to those used transmit information to the node. Each transmission inter-
so compute the Statistics. ls t area hsms a weight spcfyn the iniportatnce of traisit-

in, order to capture more closly iie. notion of local consistency, we Ling hypotheses or goals fromt that area (to tioldesix-veilitld
ran include on the consistency blackboard raise hypotheses that would in the node-lisL) and a threshold valie ssiviing thel ii1511-
sjqwar 1o lie conaistent by even a perfect knowledge source operaing at iumhptesblifogalrtn ned I rtluit
t hat blackboard level. The resolver judges the consistency of these false iu yoh-i eifo olrtn eie 4 rtsrl

* hypothese (termed 'ctwrelste-falss. hypotheses) in the same way an from that area. Each reception interest area hsL'u a %-eight
* it does true hypotheses, specifying Lte importance of receiving a byjuonhesi, or g401l ill

T IIE Al N1A(CA'INF Fuill lI9M3

- . - ... . .- .. * - .... . .

e_~~ ~ ~ 0- e-e d* e- %7 R, -_, *



that aeA (rom a node specified in the node-list), a minimum Knowledge Source Precondition Procedure.
hypothesis beliet or goal rating needed for the hypothesis or
goal to be accepted, and a credibility weight. The credibility The overall lterformne of each nosle delwnds ot ti'
weight parameter is used to change the belier of received ability of its planner and scheduler to correctly t.Atimatr
hypotheses or the rating or received goals. A node can relure which of the potential knowledge source actios i6 miot lik'ly
the eaet of accepting messages from a node by lowering the toi improve the current problem solving sate . well ;tz I Ie
belief or rating of messages received from that node. Each cost of performing that action. In 'real" syst.nis, tlii. .-
hypothesis reception interest area also has a rocusing weight timation is based in part on information provided by esich
parameter that is used to determine how heavily received knowledge source to the scheduler about te output the
hypotheses are usi in making local problem solving focusing knowledge source is likely to produce given particular in-

decisions, put hypotheses (the knowledge source response frame (I layes-
Roth & Lesser 1977). This estimation is usually fast. and
approximate it is made without a detailed analysis of te

knowledge source's input data. Increasing uncertainty in this
Rating Goals and Subgoaling estimation makes it less likely that the planner and scheduler

will appropriately decide what knowledge source actions to

perform.Goal ratings specify the importance of creating hypo- In order to investigate the effects of this uncertainty the
theses with particular attributes on the data blackboard. testbed simulation preezecutes the entire knowledge source as
They influence the behavior of the planner, the scheduler, the precondition procedure. The knowledge source does not
and the goal communication knowledge sources. The know- actually create any hypotheses or goals, but instead places
ledge source instantiation rating calculation is basically an exact specification or their attributes in the output-act at-
a weighted sum of a data-directed and a goal-directed tribute or the knowledge source insLAntiation. The output-
component. The data-directed component captures the tri e f e desoritntiat the outedt-set provides an exact description of what the knowledge
expected belief of an output hypothesis (as specified in source instantiation will do ir executed. (The output-.set is
the knowledge source instantiation's output-set attribute), updated if the input context of the knowledge source instan-
The goal-directed component measures the ratings of goals tiation is modified while it is awaiting execution.) The actual
that would be satisfied (at least in part) by an output hypotheses or goals are created when the knowledge surce

hypothesis. The goal-weighting parameter can be adjusted to instatit o re c d tg.

change the importance given to producing strongly believed The inormation contained in the output-set allows the

hypotheses versus satisfying highly-rated goals. Gaussian knowledge source instantiation rating to be made with per-
noise is added to the rating calculation to simulate knowledge fe, knowledge of the knowledge source instantiation's be-
source precondition procedures with imperfect output hypo- havior. Precondition procedures with less than perfect ca-
thesis estimation capabilities. timation lure abilities are simulated by perturbing these per-

In addition to instantiating knowledge sources to achieve feet ratings. The details are described in the next section.
a goal, the planner can also create subgoals that reflect the
importance of lower-level data in achieving the original goal
and that, if satisfied, increase the likelihood of achieving Rating Knowledge Source Instantiations
the original goal. Subgoaling is an effecti% means or focus-
ing low-level synthesis activities based on high-level expecta- The knowledge source instantiation rating calculation
tions.4 is basically a weighted sum of a data-directed and a goal-

The knowledge needed to perform subgoaling is ba.d directed component. The data-directed component capturesn the behavior of the testbed knowledge sources and is the expected belief or an output hypothesis (as specified in
parameterized by the grammar. Because subgoaling requires the knowledge source instantiation's output-set attribute).
some effort, its use needs to be controlled. In the testbed, The goal-directed component measures the ratings of goals
ubgoaling is controlled in two ways: by restricting subgoal- that would be satisfied (at lea-t in part) by each oui.put

ing to particular levels and by a minimum rating threshold hypothesis. The goal-weighting parameter adjust the ira-
for a goal to be subgoaled. The relative settings of these portance given to satisfying highly-rated goals versus pr(Ahi'-
parameters strongly influence the balance between local and ing strongly believed hypoLthe is. The weighted sun, of tt.s.,
external direction. Examples of how specific control and two components is computed for each output hypothesis inexternal~~~~~~~ ~ ~ ~ ~ dieto . E a pe r h w s eii o to n the knowledge source instantintion's oteput-s't attriltit and
communication relationships are specified in the testbed are tda i-ithe maximum value (multiplied by tile kriowledgi' solirci'presented in a recent paper (Corkill & Lesser 1983). e stim ae u ed I y t , r knowl edg.elficiency estimate) is used m. the Ibaw" ratiiiK for ktiowh.elge

sour(e instantiatioi.
,d kowldgea usd b th plnnerto eneatepredctie ~~ ~Since the testbed preconditiona proeedaurt't preconmputi." There are no prediction knowledge bourcen in the testbed. Predictive Scu the eofit' kowdge source .knowledgte is used by the planner to generatw predictive goals that can Eie actual output hypotheses of the knowledge s ource its-..,.

be Nub~oaled to focus activity on lower blackboard levels. stantiation, te aehccduler's hb'e rating calculation Itses the
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exacet befleftu of the output hypothosten and the goas thatEaoeiGfrto
they satif. Gatuarian isois cas ti aeduded to this base rat- NEI.S

ing to simulate the effects of knowledge source precondition co G Coapguulo
procedures that owe itnugxrrert in their estimation or olltimfon-n

hypothes's heliefs and of goal satisfaction. Node Segeial Hypotheses
*The knowledgte sources' precondition procedures se in- Configuation

formation~ localized to a particular region or the d1atA black-

On the other hand. the scheduler is in a position to deter.-I~
mine how a knowledge source instantiatiotis expected out- Cow E Operators
put hypotheses fit into the overall developing solution at the K%1S&dv1W Clejiwandg.
node. This difference in viewpoint leads to an interesting Kernel with Hdelp System ~''
engineering issue. Should the scheduler rely solely on the SP
myopic estimations. of the precondition functions in rating a Extection
knowledge source instantiation or should it be given domain- ectn

dependent knowledge of its own to determine consistencies Event Bit Tiac Summary
between knowledge source instantiations! To experiment Hae~ ~ r is Statsic

with this issue, an oracle weighting in the data-directed comn-
pontent can be used to introduce the consistency of each out- Oupu
put hypothesis (as specified on the consistency blackboard)
into the rating calculation. An With the knowledge source in- coco raics

stantiations themselves, this consistency information is used
to simulate the effects of developing additional knowledge Figure 5: Testhed Kernel aind Related Sutmytatems.
which can better detect the consistencies among hypotheses.

Facilities for Excperimentation

frames, and information concerning issing and false pt-

The testbed kernel is surrounded by a number of other terns, vehicles, groups, and signals at various time frames.

subsystems to facilitate experimentation by making it easy Environmental data is used in conjunction with the struec-
tural data by the FRONTEND to create the consistency

to vary the parameters of an experiment and to analyze the blkoad
results ot an experiment (Figure 5).

FRONTEND knowledge source is the special, simulation- Teevrnetfl a oetruhsvrldsg
level knowledge source uised to initialize the testbed network. iterations as we have recognized the interdependencies among

It is always the first knowledge source executed in an experi- the parameters that must be specified ror a tcstbed ex-
ment Th FROTEN reds acomletespeifiatio ofthe periment and the difficulties of correctly specifying these

run rrom an input file called the environment file. The en- prmtr o ewrso oeta e oe.I t
vironment. fil~ontains all theiiput data for the testbed, and peetfri losteseiiaino eei lse
co1s9sts of system, structural, and environmental data. Sys- of node types, local problem solving capabilities authority
tern data denotes basic parameters of the simulated vehicle relationships, communication policies, and sensor charac-

Imonitoring kystem: a seed for random number generation. teristics. The." classes are then instantiated to individual
the minimum and maximum location and time ranges, and nodes and sensors in the network.
the numbers of nodes and siensors. Structural data denotes The FRONTEND, in its generation or sensor data, can
the spatial relationships among nodes and the grammar used introduce controlled error (noise) to model ineiterrect sensing.
by knowledge source candidate generators. By varying this Noise is added to the location and signal etass and the dis-
grammar, the number or legal patterns of hypothese can be tance of the signal rrom the sensor. FIIONTENI) proce.Ssing

* varied. The most constrained grammar would be one that is also parameterized so that either these signals van Ix, in.
only allowed the particular scenario ror the experiment in troduced into the nodles all at once or at the tie they are
question to be recognized. Thus, the nature and the scope of sensed. The former provision allows exploration of svstems

consistency constraints used by knowledge sources to resolve in which there aire burst receptions of sensor data.
errors can be altered. This ability to modify the grammar To facilitate the inclusioni or 3t(m~itiohIim roeroi. &ls-

combined with the ability to vary the local resolving power play, alid imeastireveeet, roiutints into a part ictiar esim-rient.
of knowledge source provides a powerful tool for varying the the testbed heas a noinber or programniig "hooks" avail-
knowledge expertise in the simulated system. Entironmenial able to the experimenter. Each hook consi.4t, or a tliitty
data denotes the actual environment for the vehicle monitor- module that can be easily redefined to ineltide call, to the .
ing system: locations of patterns and vehicles at various time experimeter'e procedures. In the trestlxed, there is it hook%
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at the beginning of the simulation, another hook follow- the hypotheses to he displayed according to several a.ttrihut4,'
ing the FRONTEND (when all sensory data and the consis- (node. level, type orevent, and end-Lime) allowinK h. ioilior.
tency blackboard have been determined), one prior to each tant hypotheses to be replaced (painted over) by more iipmir-
knowledge source execution at each node, one when menmages tant ones. We are also working on other display frorntot thati
are transmitted or received, and one when the simulation is show more abstract mesurei of systefm perfornte such JL
finished. Each hook hs sufficient information available (such the transmission rate among nodh s, the current reliabilit v olr
as the current node that is executing, the type or knowledge nodes, etc.
source to be executed, the simulation time, etc.) to allow teh
experimenter's procedures to decide whether or not they are Testbed Status, Uses, and Future Directions
interested in being executed. The experimenter's procedures
have complete aeem to all information in the testbed.

In order to help in the analysis of the results of an ex- The testbed. which has been operational since .aiuary
periment, a number of tools have been developed: a ielec- or 1982, has been a much larger system building effort than
tive trace facility, a summary statistics facility, an interac- was originally anticipated at the onset of the project. The
Live, menu-driven debugging facility, an event monitoring current size of the testbed, which is written in CISI' (Corkill
facility, and a color-graphics display facility. Each of these 1980) running under VMS, including support facilitics is ap-
tools use the information on the consistency blackboard to proximately 500K bytes ofrcompiled lisp code. Over the three
highlight their presentations. For example, the trace racility year development period, between fifteen and twenty man-
marks knowledge source instantiations based on the correct,- years of effort have gone into the construction or the testbed.
ness (consistency) of their input and output hypotheses. This This extensive construction effort has come in part rrom
permits the experimenter to quickly scan a large amount or the large number of major design iterations. The basic con-
data for unexpected phenomena. cept of the testhed has stayed intact through these iterations

The trace facility presents a chronological trace of the but significant modifications to all aspects of the testbed
knowledge sources creation and execution and the associated have been required as we came to understand how to better
creation of hypotheses and goals and a run. The user can parameterize the various components.
vary the level of details of the internal operations of the It should also be mentioned that even though the task
systems that are to be traced, knowledge was simplified, considerable effort was still re-

The summary statistics facility is used at the end of a run quired to get the planner and knowledge sources to work
to generate a set of measures that indicate the performance effectively together. The testbed uses a very general mech-
of various aspects of the systems. These statistics are both anism for knowledge source interaction, and a number or
on a node and system basis. interaction patterns that would not occur in a centralized

In addition to these fairly common analysis tools, we feel system do occur in distributed networks.
that there is need for tools that permit a more dynamic and The saving grace of all these redesign efforts was that it
high-level view of the distributed and asynchronious activity lead us to a better understanding of how knowledge-based Al
of the simulated nodes. An event monitoring facility, which systems and, more specifically, knowledge-based distributed
has not yet been fully implemented, will permit a user to problem solving systems operate. In short, designing a
define and gather statistics on such user-defined events as knowledge-based A) system remains an art and requires con-
the average time it takes for a node to receive a hypothesis siderable iteration.
and incorporate the received information into a message to A key concern that we still have about the tested
be transmitted to another node (Bates & Wileden, 1982). design, which cannot be answered without extensive use of

Another facility which is currently operational in a the tcstbed, is the range or issues that can be effectively
limited form is a color-graphics output facility. The current explored in the testbed. So far, only one extensive set or
output display provides dynamic visual representations of experiments have been run in the testbed. These experi-
the distribution of hypotheses in the x-y space or the Dis- ments emphasized the use of the testbed to explore the effects
tributed Sensor Network during a simulation. Location and of different network problem solving strategies (Corkill 9"
track hypotheses are displayed as symbols and paths con- Lesser, 1983b). Characteristics that were varied included:
necting symbols, respectively, in the physical x-y space. The whether communication is voluntary (a node trans-
level, node, belier, and type of event of each hypothesis is miLs hypotheses at its pleasure), requeated (a node
encoded in its representation. Through this display, it is transmits hypotheses only when that inrormation is
possible to get a high-level view of the relationship among requested by another node), or a miue initiative com-
the nodes' current interpretations and their relationship to bination or voluntary and requested hypotheses (a
the actual monitored tracks. The hypotheses displayed can node volunteers only its highest rated hyiothest.
be selected according to the characteristics of any of their and await% requests before transmitting any other
attributes. For example, it is possible to display only those hypoth-ees);
hypotheses above some belief value or those on a certain * whether a node in seFLdirccted or xtemally.directed in
level, etc. In addition, an ordering function exists to rank its activities (or a combination or botll);
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USAUZ*TU CS.UIIUICATMSU/cSUTR now bieginning the prieem or mecuiey timng the- tereiibe

bitt do liot have a teel for the potential speeduap. We. are almo

0"A'*Piovide mnissing data biegininig wtirk ot snuxityjing te t4!tbed to rain am i a irallel
e Provide difecion sinnalatioa systemn on a local area network or VAX I I /7rTOsY

lit -4etting iiap larger and more complex configuirationas.

OZa large numbaer of inte~rrelatedl parameters needled to lie
specified. This specificaton prcs wai both time COnsuti

ing and error-prone. To remedy this problem, we are now
building additional graphical Support tools to allow an ex-

Provie dat Oilyperimenter to design and view the network configuaration.
e Prvid dat 0*Additionally, we are developing tools allowing comnplex node

1 n feque" topologies to be specified in a generic way, independent of

1 0 Ue reuits forany specific number of nodes (Corkill & Pattison, 1983c).
direlionWe now firmly believe that no matter how flexible and

general a research tool is, it it is not convenient to uase, or
it the empirical results are not easy to understand, only a

GOL lined small subset at its capabilities will be exploited.
* SOWn110" Wil

hm tht saislyConclusion

In this article we have described the area of distributed
problem solving and discussed some of the important issues

Figure 6- Alternative Distributed Problem Solving Strategieis, that must be addresd We also introduced the Functionally
Accurate, Cooperative approach with its emphasis on dealing
with uncertain data and control inf'ormation as an integral
part or network problem solving.

The need tar an empirical investigation at distributed

whether hypotheses, goals, or both hypothieses and problem solving was discussed, especially with regar d 1

goals are used ror internode coriation. network coordination. Such an investiagation requires at
flexible experimental tool. The Distributed Vehicle Monitor-

The organizational strategies were evaluated using two ing Testbed was presented as an example of such a tool.
different network architectures: a laterally-organized, four- The testbed facilitates the exploration or the tollowing
node network with broadcast communication among nodes factors in distributed problem solving:
and a hierarchically-orgainized, five-node network in which a node-node and node-sensor configurations;
the filth node acts as an integrating node (Figure 6). In *mxso aa n oldrce oto ntess

both architectures, the network is structured so that the t ie r t-adgaldrce on ntess

1 es cooperate by exchanging partiail and tentative high- *dsrbtoso netit n ro nteipt
level hypotheses. dt

Although these experiments did not explore all the * distributions or problem solving capability in the syn.
parameters in the testbed, they do provide evidence of tern;
the utility and flexibility of the testhed as a research tool.*tpso omncainplce sd

* The different network problem solving strategies and en-. ye fcnmncainplce sd

varonmental configurations were easily expressed, and inter- *cmuiaincanlcaatrsis
esting empirical results indicating the performance of the a the problem solving and communication responsibil.

different strategiies were obtained. The most interesting Wtee or each node; and
Of these results were how different organizational and con- . the authority relationships among nodes.L
tral stratoegie Performed in a noisy input environment that The multiple dimensions or independent control and the
created the potential for the exchange of distracting infor- detailed level of simulation in the teethed provide what we
maton amlong the nodes, teel is a very useful environment for experimentation.

* As part of these initial experiments, we had plannedl
to explore larger node configurations (with 10 to 20 nodem). 9Wr had initially hoped to solve the effecirocy problem through the ".

Ilowever, only a few at these larger test cases were run. le. of two different teint.eds. one written in liSP an the developmnt syw

tweet 3 and 5 hours of CPU time were required to stimulae torn and the other in P'ASCAL am the production system. Uinfortunately.
of with the extensive deign iterations that occurred during the building

one Oftheme larger experiments. The efficiency or the simula- 0( t tothd it waa ,,mpomnibe to keep the PASCAL imaplemnentation
tion is crucial to exploring large node configurations. We Are current and eventually it we^ dropped.
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